A Multiplexed Microfluidic Platform for Precision Single-Particle Loading and ITP-Based DNA Extraction from Individual Cells
Abstract
The analysis of single cells using genomic methods has established itself as a strong method for understanding variations between cells in cancer diagnosis and developing systems and microbial populations. The critical limitation in implementing single-cell workflows is obtaining efficient cell and nucleic acid separation with high precision. This document demonstrates the complete development process of an ITP-based single-particle loader integrated with multiple components for fast DNA extraction from isolated cells with high purity.
The proposed system combines hydrodynamic forces alongside di-electrophoresis to automatically position single cells and beads into well-defined reaction chambers of a microfluidic array. The device has reaction zones with customised ITP buffers and electric field gradients for efficient genomic DNA extraction and clean concentrate acquisition. This platform design enables parallel extraction processes to handle dozens and hundreds of single cells efficiently and well.
This paper outlines how engineers solved fundamental synchronisation obstacles between single-cell retrieval and ITP start-up by developing optimal electrode setups and fluidic gate functionality and controlling electrostatic timing precisely. The evaluated system demonstrates over 90% DNA recovery success performance metrics, combined with minimal lane interference as it operates effectively with subsequent sequencing pipelines. The scalable technology allows essential applications in single-cell omics research, rare cell diagnostic procedures, and real-time cell sorting through molecular evaluations.
References
Bercovici, M., Han, C. M., Liao, J. C., & Santiago, J. G. (2012). Rapid hybridisation of nucleic acids using isotachophoresis. Proceedings of the National Academy of Sciences of the United States of America, 109(28), 11127–11132. https://doi.org/10.1073/pnas.1205004109
Chavkin, N. W., & Hirschi, K. K. (2020, March 31). Single Cell Analysis in Vascular Biology. Frontiers in Cardiovascular Medicine, 7, 42. https://doi.org/10.3389/fcvm.2020.00042
Chen, C., Li, Y., Wang, Q., Cai, N., Wu, L., & Yan, X. (2023). Single-particle assessment of six different drug-loading strategies for incorporating doxorubicin into small extracellular vesicles. Analytical and Bioanalytical Chemistry, 415(7), 1287–1298. https://doi.org/10.1007/s00216-022-04248-4
Chen, C., Sun, M., Wang, J., Su, L., Lin, J., & Yan, X. (2021). Active cargo loading into extracellular vesicles: Highlights the heterogeneous encapsulation behaviour. Journal of Extracellular Vesicles, 10(13). https://doi.org/10.1002/jev2.12163
Chisholm, A., Mousavi, E., & Ahmadi-Sheshde, E. (2015). Evaluation of single particle loading test to estimate the uniaxial compressive strength of sandstone. Journal of Petroleum Science and Engineering, 135, 421–428. https://doi.org/10.1016/j.petrol.2015.09.031
Dopheide, A., Xie, D., Buckley, T. R., Drummond, A. J., & Newcomb, R. D. (2019). Impacts of DNA extraction and PCR on DNA metabarcoding estimates of soil biodiversity. Methods in Ecology and Evolution, 10(1), 120–133. https://doi.org/10.1111/2041-210X.13086
Fang, C., Nie, Z., Gong, J., Li, B., Hu, W., & Mohammed, A. (2022). Discrete element simulation of effects of multi-contact loading on single particle crushing. Particuology, 69, 49–60. https://doi.org/10.1016/j.partic.2021.11.012
Fiedorová, K., Radvanský, M., Němcová, E., Grombiříková, H., Bosák, J., Černochová, M., … Freiberger, T. (2019). The impact of DNA extraction methods on stool bacterial and fungal microbiota community recovery. Frontiers in Physiology, 10. https://doi.org/10.3389/fmicb.2019.00821
Gupta, N. (2019). DNA extraction and polymerase chain reaction. Journal of Cytology, 36, 116–117. https://doi.org/10.4103/JOC.JOC_110_18
Ho, T. M., Razzaghi, A., Ramachandran, A., & Mikkonen, K. S. (2022, January 1). Emulsion characterisation via microfluidic devices: A review on interfacial tension and stability to coalescence. Advances in Colloid and Interface Science, 299, 102541. https://doi.org/10.1016/j.cis.2021.102541
J Shetty, P. (2020). The Evolution of DNA Extraction Methods. American Journal of Biomedical Science & Research, 8(1), 39–45. https://doi.org/10.34297/ajbsr.2020.08.001234
Joensson, H. N., & Andersson Svahn, H. (2012, December 3). Droplet microfluidics tool for single-cell analysis. Angewandte Chemie - International Edition, 51(49), 12176-12192. https://doi.org/10.1002/anie.201200460
Lee, S., Vu, H. M., Lee, J. H., Lim, H., & Kim, M. S. (2023, March 1). Advances in Mass Spectrometry-Based Single Cell Analysis. Biology, 12(3), 395. https://doi.org/10.3390/biology12030395
Liu, D., Wang, Y., Li, X., Li, M., Wu, Q., Song, Y., … Yang, C. (2022, October 1). Integrated microfluidic devices for in vitro diagnostics at the point of care. Aggregate, 3(5), e184. https://doi.org/10.1002/agt2.184
Luo, T., Fan, L., Zhu, R., & Sun, D. (2019, February 1). Microfluidic single-cell manipulation and analysis: Methods and applications. Micromachines, 10(2), 104. https://doi.org/10.3390/mi10020104
Luo, X., Chen, J. Y., Ataei, M., & Lee, A. (2022, February 1). Microfluidic Compartmentalisation Platforms for Single Cell Analysis. Biosensors, 12(2), 58. https://doi.org/10.3390/bios12020058
Malá, Z., Gebauer, P., & Boček, P. (2015, January 1). Recent progress in analytical capillary isotachophoresis. Electrophoresis, 36(1), 2-14. https://doi.org/10.1002/elps.201400337
Marques, M. P. C., & Fernandes, P. (2011, October). Microfluidic devices: Useful tools for bioprocess intensification. Molecules, 16(10), 8368-8401. https://doi.org/10.3390/molecules16108368
Niculescu, A. G., Chircov, C., Bîrcă, A. C., & Grumezescu, A. M. (2021, February 2). Fabrication and applications of microfluidic devices: A review. International Journal of Molecular Sciences, 22(4), 2011. https://doi.org/10.3390/ijms22042011
Ozadam, H., Tonn, T., Han, C. M., Segura, A., Hoskins, I., Rao, S., … Cenik, C. (2023). Single-cell quantification of ribosome occupancy in early mouse development. Nature, 618(7967), 1057–1064. https://doi.org/10.1038/s41586-023-06228-9
Rai, P. K., Islam, M., & Gupta, A. (2022, November 1). Microfluidic devices for the detection of contamination in water samples: A review. Sensors and Actuators A: Physical, 347, 113926. https://doi.org/10.1016/j.sna.2022.113926
Ramachandran, A., Huyke, D. A., Sharma, E., Sahoo, M. K., Huang, C., Banaei, N., … Santiago, J. G. (2020). Electric field-driven microfluidics for rapid CRISPR-based diagnostics and its application to the detection of SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America, 117(47), 29518–29525. https://doi.org/10.1073/pnas.2010254117
Rogacs, A., Marshall, L. A., & Santiago, J. G. (2014, March 28). Purification of nucleic acids using isotachophoresis. Journal of Chromatography A, 1335, 105-120. https://doi.org/10.1016/j.chroma.2013.12.027
Uvet, H., Feng, L., Ohashi, S., Hagiwara, M., Kawahara, T., Yamanishi, Y., & Arai, F. (2011). On-chip single particle loading and dispensing. In Proceedings - IEEE International Conference on Robotics and Automation (pp. 3151–3156). https://doi.org/10.1109/ICRA.2011.5980449
Copyright (c) 2025 Marie Emmanuella Andjui

This work is licensed under a Creative Commons Attribution 4.0 International License.