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ABSTRACT

Healthcare Al is increasingly deployed in decision support and patient-facing workflows, but
scale-up is limited by privacy constraints on protected health information (PHI), expanding
attack surfaces in hybrid delivery models, and weak transparency of complex models. This
paper articulates ZT-XFL, a reference architecture that integrates federated learning (FL) with
differential privacy (DP) and explainable Al (XAI) under a zero trust architecture (ZTA). The
control plane enforces explicit verification, least-privilege authorization, and comprehensive
audit logging as defined in ZTA guidance [1], while the training plane coordinates institution-
local optimization (FedAvg-style aggregation) [3] and optionally applies DP-SGD and privacy
budgeting to bound leakage from updates [6]. Secure aggregation is incorporated to prevent
the coordinator from learning individual client updates [7]. The governance plane binds post-
hoc explanations (LIME/SHAP) to immutable model versions and inference events [12], [13],
reflecting the view that clinical explainability requirements are context-dependent and must be
assessed alongside validation and system role [16]. We formalize a threat model spanning
endpoint compromise, insider misuse, gradient-based inference, supply-chain risks, and
poisoning of federated updates; and we map each threat to enforceable controls across identity,
device posture, workload attestation, update screening, and explanation-access policy [1], [2].
Rather than presenting institution-specific results, we provide a reproducible evaluation
protocol that jointly measures utility and calibration, privacy loss (g, d), security control
coverage, explanation stability, and robustness against adversarial updates and inference
attacks [9], [10], [11], enabling benchmarking on multi-site healthcare tasks without
centralizing PHI.
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1. INTRODUCTION

Clinical and operational Al systems are now routinely proposed for triage, risk
stratification, care coordination, and patient engagement. Yet, healthcare data remains siloed,
legally sensitive, and operationally costly to centralize, which constrains both model
development and external validation [4], [5], [15]. Concurrently, hybrid cloud architectures,
telehealth, and third-party integrations erode the practical value of perimeter security,
motivating security postures that assume breach and enforce per-request access decisions [1].

Federated learning offers a principled alternative to centralized training by keeping raw
data at the source and aggregating local updates into a shared model [3]. In healthcare, FL is
viewed as a pragmatic response to fragmentation and governance barriers, but it introduces
non-IID statistics, systems constraints, and new attack surfaces through updates and
orchestration [4], [15]. Differential privacy provides formal guarantees by bounding the
influence of any individual record on a model or released statistic, typically by gradient
clipping and noise addition under a tracked privacy budget [6], [8].
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Finally, clinical adoption hinges on accountability. Explanations can support calibrated
trust, contestability, and auditing, but their utility depends on validation rigor, workflow
integration, and the designated role of the system in decision-making [16]. We therefore treat
security, privacy, and interpretability as a coupled design problem rather than independent
modules.

Contributions: (i) a healthcare-specific threat model for distributed learning and
inference; (ii) ZT-XFL, a three-plane reference architecture combining ZTA, FL, DP and XA,
(ii1) a control-to-threat mapping suitable for audits; and (iv) an evaluation protocol that enables
reproducible assessment without centralizing PHI.

2. RELATED WORK

Federated learning was popularized as an approach for training models on decentralized
data through iterative model averaging (FedAvg), significantly reducing communication
relative to centralized SGD in heterogeneous settings [3]. Healthcare surveys and perspectives
identify FL as a route to unlock multi-institution learning while respecting governance
constraints, but emphasize privacy leakage from updates and the need for secure protocols and
robust aggregation [4], [15].

Differential privacy provides a mathematical definition of privacy loss and mechanisms for
calibrating perturbations to sensitivity [8]. DP-SGD extends these ideas to deep learning
through per-example clipping and noise with refined accounting [6]. In practice, DP is often
positioned as a mitigation for membership inference and related leakage modes [10].

Zero trust architecture shifts defenses from implicit network trust to explicit verification
and resource-centric protection, requiring authentication and authorization prior to establishing
sessions and recommending continuous policy evaluation [1]. Planning guidance further ties
zero trust deployments to risk management processes and stakeholder alignment [2].

For explainability, LIME explains individual predictions through local surrogate models
[12], while SHAP unifies additive feature attribution under Shapley values with desirable
axioms [13]. In clinical decision support, the value of explainability depends on feasibility,
validation, user groups, and how the system is positioned relative to human decision authority
[16].

3. THREAT MODEL AND DESIGN OBJECTIVES
Threats considered include: (T1) external compromise of client endpoints or
orchestration services; (T2) insider misuse and over-privileged access to data, models, or logs;
(T3) inference attacks that recover information from model outputs or federated updates,
including membership inference and model inversion [10], [11]; (T4) poisoning and backdoors
introduced via malicious client updates, requiring robust aggregation [14]; and (T5) supply-
chain compromise in dependencies, container images, and CI/CD artifacts.
Design objectives are: O1 Privacy—minimize exposure of PHI and bound leakage using
DP and secure aggregation [6], [7]; O2 Security—enforce per-request authorization and
continuous verification consistent with ZTA [1], [2]; O3 Integrity—detect anomalous or
adversarial updates and maintain provenance; O4 Explainability & Governance—deliver
validated, workflow-aligned explanations and audit artifacts [16]; and O5 Scalability—support
multi-site training under non-IID distributions and operational constraints [3], [4].
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4. PROPOSED ARCHITECTURE: ZT-XFL

ZT-XFL Reference Architecture (Three Planes)

4 ™
Zero-Trust Control Plane
Continuous verification « Least privilege » Session-bound authorization » Immutable audit
\ y,
‘b N
Federated Training Plane
Local training enclaves « Secure aggregation * FedAvg optimization « Differential privacy budget
\ y,
4 ™\
Explainability & Governance Plane
SHAP/LIME explanations « Model lineage * Risk controls « Compliance reporting
\ _ - J
Design intent: reduce PHI exposure while improving integrity, auditability, and clinical trust.
Figure 1. ZT-XFL three-plane reference architecture
Table 1. Threat-to-control mapping (illustrative)
Threat Control family Example enforcement
T1 Endpoint compromise ZTA policy + workload Deny if device posture fails;
attestation [1] short-lived tokens
T3 Update/Output inference DP + secure aggregation DP-SGD; masked updates
[6], [7] via secure aggregation
T4 Poisoning/backdoors Robust aggregation [14] Anomaly scoring; Krum-
style selection
T2 Insider misuse Least privilege + audit [1], [ Just-in-time access;
[2] immutable audit trail

ZT-XFL separates responsibilities into three planes (Fig. 1): a Zero-Trust Control Plane,
a Federated Training Plane, and an Explainability & Governance Plane. The control plane
implements policy enforcement points for every access to data, models, and inference services,
ensuring authentication and authorization precede session establishment, and that logging is
immutable and reviewable [1].

The training plane orchestrates federated rounds using FedAvg-style aggregation [3]. For
privacy, it optionally applies DP-SGD on clients or DP noise on aggregated updates with
explicit privacy budgeting [6]. Secure aggregation prevents the coordinator from viewing any
single client’s update in the clear, limiting exposure even under honest-but-curious
assumptions [7].

The governance plane binds explanations to model version identifiers and inference
events to support traceability. Explanations are treated as governed outputs because they may
reveal sensitive correlates or be misinterpreted if not validated and contextually appropriate

[16].
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5. IMPLEMENTATION BLUEPRINT

Federated optimization proceeds iteratively: the server selects eligible clients, distributes
the current model, clients train locally for E epochs, and the server aggregates weighted
updates. Selection and eligibility are driven by policy (device posture, workload attestation,
least privilege) to align with zero-trust assumptions [1].

Privacy instrumentation includes: (i) per-example gradient clipping and Gaussian noise
for DP-SGD with accounting [6]; (ii) secure aggregation to hide individual updates from the
server [7]; and (iii) release policies for model checkpoints and explanations, so that governance
artifacts are aligned with privacy budgets and purpose limitations [2].

Update integrity can be reinforced through robust aggregation rules that tolerate
Byzantine behavior, such as Krum, when threat conditions justify the added computation [14].

6. EVALUATION PROTOCOL

Evaluation Protocol for ZT-XFL
( N\ [ N [ N/ N [ )
Utility Privacy Security Explainability Robustness
* AUC/ PR-AUC * (g, §) reporting + Policy coverage * Stability + Update anomaly detegtion
* Calibration * Clipping + noise paragpns | * Audit completeness + Fidelity checks + Poisoning resilience
* Cross-site generalizatpn | ¢ Budget consumption + Access anomalies + Clinician usability + Backdoor checks
* Subgroup performang] * Release cadence + Incident simulaticn + Decision-impact + Drift monitering
\, y \, y \, v, \, y \, y
Protocol supports federated evaluation without centralizing protected health information.

Figure 2. Evaluation dimensions and measurable criteria for ZT-XFL

Evaluation is designed to be reproducible without centralizing PHI. As summarized in
Fig. 2, we assess: (E1) predictive utility and calibration; (E2) privacy loss via reported (&, 0)
budgets and DP configuration; (E3) security posture via policy coverage and audit
completeness under ZTA principles [1], [2]; (E4) explainability via stability and usability
measures grounded in clinical CDSS considerations [16]; and (E5) robustness against
poisoning and inference attacks, referencing established attack models [10], [11], [14].

7. DISCUSSION

ZT-XFL emphasizes that FL alone is not a privacy guarantee: update leakage and output
leakage can still expose sensitive membership or attributes, motivating DP and secure
aggregation [6], [7], [10]. Similarly, security controls must extend beyond network boundaries
to identity, device, and workload trust signals evaluated continuously, as described in ZTA
guidance [1], [2].

Explainability is not treated as an aesthetic overlay but as a governed interface. Clinical
literature argues that explainability requirements vary with the context, the system’s role, and
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validation maturity; therefore, explanations must be coupled with model lineage, limitations,
and monitoring [16].

A limitation of this manuscript is that it presents a deployable pattern and evaluation
criteria rather than reporting institution-specific performance. This is deliberate to avoid
disclosure of PHI and proprietary deployment details while enabling reproducible
benchmarking on public or federated simulation datasets [4], [15].

8. CONCLUSION
This work presented ZT-XFL, a privacy-first pattern for healthcare Al that composes
zero trust controls with federated learning, differential privacy, secure aggregation, and
explanation governance. The architecture reduces PHI centralization pressure, strengthens
security through per-request authorization, and supports accountable deployment through
traceable explanations and audit artifacts.

DATA AVAILABILITY STATEMENT
No protected health information is shared. The evaluation protocol can be instantiated on
federated simulations or approved multi-site studies without centralizing raw data.
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