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ABSTRACT 

Healthcare AI is increasingly deployed in decision support and patient-facing workflows, but 

scale-up is limited by privacy constraints on protected health information (PHI), expanding 

attack surfaces in hybrid delivery models, and weak transparency of complex models. This 

paper articulates ZT-XFL, a reference architecture that integrates federated learning (FL) with 

differential privacy (DP) and explainable AI (XAI) under a zero trust architecture (ZTA). The 

control plane enforces explicit verification, least-privilege authorization, and comprehensive 

audit logging as defined in ZTA guidance [1], while the training plane coordinates institution-

local optimization (FedAvg-style aggregation) [3] and optionally applies DP-SGD and privacy 

budgeting to bound leakage from updates [6]. Secure aggregation is incorporated to prevent 

the coordinator from learning individual client updates [7]. The governance plane binds post-

hoc explanations (LIME/SHAP) to immutable model versions and inference events [12], [13], 

reflecting the view that clinical explainability requirements are context-dependent and must be 

assessed alongside validation and system role [16]. We formalize a threat model spanning 

endpoint compromise, insider misuse, gradient-based inference, supply-chain risks, and 

poisoning of federated updates; and we map each threat to enforceable controls across identity, 

device posture, workload attestation, update screening, and explanation-access policy [1], [2]. 

Rather than presenting institution-specific results, we provide a reproducible evaluation 

protocol that jointly measures utility and calibration, privacy loss (ε, δ), security control 

coverage, explanation stability, and robustness against adversarial updates and inference 

attacks [9], [10], [11], enabling benchmarking on multi-site healthcare tasks without 

centralizing PHI. 
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1. INTRODUCTION 

Clinical and operational AI systems are now routinely proposed for triage, risk 

stratification, care coordination, and patient engagement. Yet, healthcare data remains siloed, 

legally sensitive, and operationally costly to centralize, which constrains both model 

development and external validation [4], [5], [15]. Concurrently, hybrid cloud architectures, 

telehealth, and third‑party integrations erode the practical value of perimeter security, 

motivating security postures that assume breach and enforce per-request access decisions [1]. 

Federated learning offers a principled alternative to centralized training by keeping raw 

data at the source and aggregating local updates into a shared model [3]. In healthcare, FL is 

viewed as a pragmatic response to fragmentation and governance barriers, but it introduces 

non‑IID statistics, systems constraints, and new attack surfaces through updates and 

orchestration [4], [15]. Differential privacy provides formal guarantees by bounding the 

influence of any individual record on a model or released statistic, typically by gradient 

clipping and noise addition under a tracked privacy budget [6], [8]. 
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Finally, clinical adoption hinges on accountability. Explanations can support calibrated 

trust, contestability, and auditing, but their utility depends on validation rigor, workflow 

integration, and the designated role of the system in decision-making [16]. We therefore treat 

security, privacy, and interpretability as a coupled design problem rather than independent 

modules. 

Contributions: (i) a healthcare-specific threat model for distributed learning and 

inference; (ii) ZT-XFL, a three-plane reference architecture combining ZTA, FL, DP and XAI; 

(iii) a control-to-threat mapping suitable for audits; and (iv) an evaluation protocol that enables 

reproducible assessment without centralizing PHI. 

 

2. RELATED WORK 

Federated learning was popularized as an approach for training models on decentralized 

data through iterative model averaging (FedAvg), significantly reducing communication 

relative to centralized SGD in heterogeneous settings [3]. Healthcare surveys and perspectives 

identify FL as a route to unlock multi-institution learning while respecting governance 

constraints, but emphasize privacy leakage from updates and the need for secure protocols and 

robust aggregation [4], [15]. 

Differential privacy provides a mathematical definition of privacy loss and mechanisms for 

calibrating perturbations to sensitivity [8]. DP-SGD extends these ideas to deep learning 

through per-example clipping and noise with refined accounting [6]. In practice, DP is often 

positioned as a mitigation for membership inference and related leakage modes [10]. 

Zero trust architecture shifts defenses from implicit network trust to explicit verification 

and resource-centric protection, requiring authentication and authorization prior to establishing 

sessions and recommending continuous policy evaluation [1]. Planning guidance further ties 

zero trust deployments to risk management processes and stakeholder alignment [2]. 

For explainability, LIME explains individual predictions through local surrogate models 

[12], while SHAP unifies additive feature attribution under Shapley values with desirable 

axioms [13]. In clinical decision support, the value of explainability depends on feasibility, 

validation, user groups, and how the system is positioned relative to human decision authority 

[16]. 

 

3. THREAT MODEL AND DESIGN OBJECTIVES 

Threats considered include: (T1) external compromise of client endpoints or 

orchestration services; (T2) insider misuse and over‑privileged access to data, models, or logs; 

(T3) inference attacks that recover information from model outputs or federated updates, 

including membership inference and model inversion [10], [11]; (T4) poisoning and backdoors 

introduced via malicious client updates, requiring robust aggregation [14]; and (T5) supply-

chain compromise in dependencies, container images, and CI/CD artifacts. 

Design objectives are: O1 Privacy—minimize exposure of PHI and bound leakage using 

DP and secure aggregation [6], [7]; O2 Security—enforce per-request authorization and 

continuous verification consistent with ZTA [1], [2]; O3 Integrity—detect anomalous or 

adversarial updates and maintain provenance; O4 Explainability & Governance—deliver 

validated, workflow-aligned explanations and audit artifacts [16]; and O5 Scalability—support 

multi-site training under non‑IID distributions and operational constraints [3], [4]. 
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4. PROPOSED ARCHITECTURE: ZT-XFL 

 
Figure 1. ZT-XFL three-plane reference architecture 

 

Table 1. Threat-to-control mapping (illustrative) 

Threat Control family Example enforcement 

T1 Endpoint compromise ZTA policy + workload 

attestation [1] 

Deny if device posture fails; 

short-lived tokens 

T3 Update/Output inference DP + secure aggregation 

[6], [7] 

DP-SGD; masked updates 

via secure aggregation 

T4 Poisoning/backdoors Robust aggregation [14] Anomaly scoring; Krum-

style selection 

T2 Insider misuse Least privilege + audit [1], 

[2] 

Just-in-time access; 

immutable audit trail 

 

ZT-XFL separates responsibilities into three planes (Fig. 1): a Zero‑Trust Control Plane, 

a Federated Training Plane, and an Explainability & Governance Plane. The control plane 

implements policy enforcement points for every access to data, models, and inference services, 

ensuring authentication and authorization precede session establishment, and that logging is 

immutable and reviewable [1]. 

The training plane orchestrates federated rounds using FedAvg-style aggregation [3]. For 

privacy, it optionally applies DP-SGD on clients or DP noise on aggregated updates with 

explicit privacy budgeting [6]. Secure aggregation prevents the coordinator from viewing any 

single client’s update in the clear, limiting exposure even under honest‑but‑curious 

assumptions [7]. 

The governance plane binds explanations to model version identifiers and inference 

events to support traceability. Explanations are treated as governed outputs because they may 

reveal sensitive correlates or be misinterpreted if not validated and contextually appropriate 

[16]. 

 

http://www.ejsit-journal.com/


European Journal of Science, Innovation and Technology 

www.ejsit-journal.com 

 

 
82 

5. IMPLEMENTATION BLUEPRINT 

Federated optimization proceeds iteratively: the server selects eligible clients, distributes 

the current model, clients train locally for E epochs, and the server aggregates weighted 

updates. Selection and eligibility are driven by policy (device posture, workload attestation, 

least privilege) to align with zero-trust assumptions [1]. 

Privacy instrumentation includes: (i) per-example gradient clipping and Gaussian noise 

for DP-SGD with accounting [6]; (ii) secure aggregation to hide individual updates from the 

server [7]; and (iii) release policies for model checkpoints and explanations, so that governance 

artifacts are aligned with privacy budgets and purpose limitations [2]. 

Update integrity can be reinforced through robust aggregation rules that tolerate 

Byzantine behavior, such as Krum, when threat conditions justify the added computation [14]. 

 

6. EVALUATION PROTOCOL 

 
Figure 2. Evaluation dimensions and measurable criteria for ZT-XFL 

 

Evaluation is designed to be reproducible without centralizing PHI. As summarized in 

Fig. 2, we assess: (E1) predictive utility and calibration; (E2) privacy loss via reported (ε, δ) 

budgets and DP configuration; (E3) security posture via policy coverage and audit 

completeness under ZTA principles [1], [2]; (E4) explainability via stability and usability 

measures grounded in clinical CDSS considerations [16]; and (E5) robustness against 

poisoning and inference attacks, referencing established attack models [10], [11], [14]. 

 

7. DISCUSSION 

ZT-XFL emphasizes that FL alone is not a privacy guarantee: update leakage and output 

leakage can still expose sensitive membership or attributes, motivating DP and secure 

aggregation [6], [7], [10]. Similarly, security controls must extend beyond network boundaries 

to identity, device, and workload trust signals evaluated continuously, as described in ZTA 

guidance [1], [2]. 

Explainability is not treated as an aesthetic overlay but as a governed interface. Clinical 

literature argues that explainability requirements vary with the context, the system’s role, and 
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validation maturity; therefore, explanations must be coupled with model lineage, limitations, 

and monitoring [16]. 

A limitation of this manuscript is that it presents a deployable pattern and evaluation 

criteria rather than reporting institution-specific performance. This is deliberate to avoid 

disclosure of PHI and proprietary deployment details while enabling reproducible 

benchmarking on public or federated simulation datasets [4], [15]. 

 

8. CONCLUSION 

This work presented ZT-XFL, a privacy-first pattern for healthcare AI that composes 

zero trust controls with federated learning, differential privacy, secure aggregation, and 

explanation governance. The architecture reduces PHI centralization pressure, strengthens 

security through per-request authorization, and supports accountable deployment through 

traceable explanations and audit artifacts. 

 

DATA AVAILABILITY STATEMENT 
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