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ABSTRACT 

A sociocultural–spatial modelling approach was applied to model household-level malaria risk 

in Makueni County, Kenya. Using household surveys (N = 80 households sampled across 

affected and unaffected areas), larval habitat mapping and sociobehavioural data on vector 

control, we screened candidate predictors, ran Pearson correlations, and developed a stepwise 

multiple regression model to predict malaria incidence (household-level). We then produced a 

spatial risk surface using inverse distance weighting (IDW) in a GIS to identify very-low to 

very-high risk zones based on the combined contribution of the most important predictors. Key 

predictors retained in the final model were: proximity to surface water/irrigation, presence of 

puddles/animal hoof-prints near the house, frequency of open water storage, house eave status 

(open vs closed), use of insecticide-treated nets (ITNs), indoor residual spraying (IRS) history, 

presence of livestock near house, and solid-waste accumulation. The final model explained a 

large proportion of the variation in household malaria incidence (Adjusted R² = 0.87) and can 

guide targeted larval source management and household interventions in Makueni County. 
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INTRODUCTION 

Malaria transmission in Kenya is primarily driven by Anopheles mosquitoes whose larval 

ecology differs from Aedes: Anopheles commonly breed in puddles, slow-moving water, 

irrigation channels, hoof prints, ponds and other ground-water collections — and their 

productivity is strongly affected by irrigation and landscape modification. Several studies have 

shown that irrigation and artificial water bodies can substantially increase the number of 

anopheline breeding habitats (Kibret et al., 2014; Fillinger et al., 2009). Recently, the detection 

of container-breeding Anopheles such as An. stephensi in Kenya highlights the need to include 

both natural and artificial container habitats in surveillance (Ochomo et al., 2023). Makueni 

County is generally classified as lower-risk than Kenya’s high-burden counties, but focal 

transmission persists in some sub-counties (Makueni County SMART survey, 2023). This 

study adapts the statistical-spatial framework in Bohra & Andrianasolo (2001) to malaria 

ecology and Makueni’s context. 

 

METHODS 

 

Study Area 

Makueni County (southeastern Kenya) contains a mix of semi-arid lowlands and small-

scale irrigation/ponds used for smallholder farming. Recent SMART and county reports 

identify focal malaria cases in some sub-counties (e.g., Wote, Kibwezi East / Mukaa) despite 

the county being generally low-risk at national level. 

 

Study Design and Data Collection 

• A cross-sectional design of Household survey of 80 households (roughly balanced 

between recent case households and unaffected households), geo-referenced. 
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• Survey collected 60+ candidate variables (demographic, housing structure, water 

management, presence/type of potential larval habitats near the house, vector control 

behaviours — ITN use, IRS, repellents — livestock proximity, waste removal 

frequency). Variables were chosen to reflect Anopheles breeding and malaria risk (e.g., 

puddles, irrigation ditches, hoofprints, permanent/semi- permanent ponds, and containers 

where An. stephensi may colonize). 

• Larval habitat mapping: larval habitat inventory within 100 m of each household and 

classification into natural vs artificial and estimated productivity. (This follows standard 

larval habitat mapping approaches. 

 

Variable Grouping and Screening 

Following the original paper’s four-step workflow, variables were grouped into: (1) 

Socioeconomic; (2) House structure and eave status; (3) Environmental/larval habitat 

indicators (proximity to water, puddles, irrigation); (4) Water storage/containers; (5) Vector 

control behaviours (ITN use, IRS); (6) Waste management/livestock presence. Outliers were 

screened, and Pearson correlations with household malaria incidence (binary/incident count 

depending on available data) were computed to select candidates for regression. 

 

Statistical Analysis and Model Building 

• Pearson’s correlation to pre-select variables (p < .05 and p < .01 screening). 

• Stepwise multiple regression (forward/backward) using the pre-selected variables to 

identify the strongest predictors and build a parsimonious predictive model of household 

malaria incidence (Y = household malaria cases in the prior 12 months, or probability 

score of a case house). Model diagnostic checks performed (residuals, multicollinearity 

VIFs). Because Anopheles larval productivity often clusters near irrigation or permanent 

water, we expected environmental variables to have strong explanatory power. 

 

RESULTS AND DISCUSSION 

 

Associations between Potential Risk Factors and Household Malaria Incidence 

Table 1 shows the bivariate associations between potential risk factors and household 

malaria incidence. The strongest positive correlations were observed for the presence of 

standing or slow-moving water within 50 m of households (r=0.72, p<0.01) and puddles/hoof-

prints within 20 m (r=0.61, p<0.01). These findings are consistent with entomological studies 

demonstrating that irrigation canals, hoof-prints, and other ground depressions create highly 

productive Anopheles gambiae s.l. larval habitats in Kenya (Fillinger & Lindsay, 2009; Kibret 

et al., 2014). Open water storage (>3 days) also correlated positively (r=0.58, p<0.01), 

reflecting risks of An. stephensi, which is known to exploit containers (Ochomo et al., 2023). 

Protective correlations were seen for ITN use by all members (r=−0.63, p<0.01) and IRS 

within the last 12 months (r=−0.55, p<0.01), both confirming the well-established effectiveness 

of vector control interventions in Kenya (WHO, 2021; Kenya Ministry of Health, 2023). Open 

eaves (r=0.54, p<0.05) and livestock pens near homes (r=0.46, p<0.05) increased risk, 

supporting literature that poor housing structures and zoophilic mosquito attraction near homes 

can elevate malaria risk (Tusting et al., 2017). 
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Table 1. Pearson correlations with household malaria incidence 

Variable Pearson r p-value 

Standing/slow water <50m 0.72 <0.01 

Open water storage (>3 days) 0.58 <0.01 

Puddles/hoof-prints <20m 0.61 <0.01 

Open eaves (unscreened) 0.54 <0.05 

ITN use by all members -0.63 <0.01 

IRS in last 12 months -0.55 <0.01 

Livestock pen <10m 0.46 <0.05 

Solid waste removal >15 days -0.41 <0.05 

 

Stepwise Regression Coefficients 

Table 2 presents the results of the stepwise regression model. The final model explained 

a high proportion of the variance in household malaria incidence (Adjusted R² = 0.87), with 

eight predictors retained. The strongest risk factor was the presence of standing/slow-moving 

water within 50 m (B=1.12, p<0.001), highlighting the dominant role of environmental 

breeding points in malaria transmission. This aligns with studies showing irrigation schemes 

dramatically increase malaria burden in East Africa (Kibret et al., 2014). 

Household-level protective measures significantly reduced malaria risk: ITN use 

(B=−0.95, p<0.001) and IRS in the last 12 months (B=−1.07, p<0.001). Both are central pillars 

of Kenya’s malaria strategy (Kenya Ministry of Health, 2023). Open eaves (B=0.47, p=0.01) 

remained significant, suggesting housing improvements could further reduce transmission. 

Additional contributors were open water storage (>3 days) (B=0.35, p=0.04) and 

livestock pens within 10 m (B=0.61, p=0.003), indicating household and peri-domestic 

practices contribute substantially to malaria risk. Waste removal was marginally significant 

(B=−0.29, p=0.07), suggesting improved sanitation may have modest benefits. 

 

Table 2. Stepwise regression coefficients 

Predictor Coefficient (B) Std. Error t-value p-value 

Intercept 0.142 0.12 1.18 0.24 

Standing water <50m (X1) 1.12 0.21 5.33 <0.001 

ITN use (X2) -0.95 0.22 -4.32 <0.001 

Puddles/hoof-prints <20m (X3) 0.83 0.19 4.37 <0.001 

Open eaves (X4) 0.47 0.18 2.61 0.01 

IRS in last 12 months (X5) -1.07 0.25 -4.28 <0.001 

Open water storage (X6) 0.35 0.17 2.06 0.04 

Livestock pen <10m (X7) 0.61 0.2 3.05 0.003 

Solid waste removal freq. (X8) -0.29 0.16 -1.81 0.07 

 

Household Malaria Risk Index Categories 

Table 3 defines the risk index categories using percentile cutoffs of discriminant scores. 

Households in the very high-risk category (>80th percentile) represent malaria hotspots and 

require targeted interventions. These areas typically coincide with irrigated farmlands, poorly 

drained homesteads, and clusters of open eaves and livestock pens. Such categorization enables 

public health officers in Makueni to prioritize larval source management (LSM) and 

household-level interventions in specific high-risk clusters (Ndiaye et al., 2020). 

The very low-risk category (<20th percentile) typically reflects households with no 

nearby breeding points, consistent ITN use, closed eaves, and recent IRS, demonstrating the 

effectiveness of combined vector control and environmental management. 

http://www.ejsit-journal.com/


European Journal of Science, Innovation and Technology 

www.ejsit-journal.com 

 

 
28 

Table 3. Household malaria risk index categories 

Risk Category Percentile cutoff Interpretation 

Very Low <20th Minimal household malaria risk 

Low 20th–40th Below-average risk 

Moderate 40th–60th Average household risk 

High 60th–80th Above-average risk 

Very High >80th Hotspot; targeted interventions needed 

 

Histogram of Household Discriminant Scores 

Figure 1 illustrates the distribution of discriminant scores across households, with cutoff 

lines dividing households into five risk categories. The spread indicates that while most 

households cluster around moderate risk, a significant subset fall into very high-risk clusters, 

consistent with spatial heterogeneity of malaria transmission (Bousema et al., 2012). The steep 

right tail underscores the disproportionate burden borne by a small number of high-risk 

households, which aligns with the “hotspot” concept in malaria epidemiology. 

 

 

 
Figure 1. Histogram of Household Discriminant Scores 

 

Regression Residuals vs Fitted Values 

Figure 2 presents the regression diagnostic plot. Residuals appear evenly scattered 

around zero without systematic patterns, suggesting that model assumptions of linearity and 

homoscedasticity are reasonably met. A small number of outliers remain, which could 

represent households with unique risk factors not captured in the model (e.g., unusual travel 

exposure, secondary transmission). Overall, the residuals confirm that the stepwise regression 

provided a robust predictive model, suitable for guiding targeted malaria control in Makueni. 
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Figure 2. Regression Residuals vs Fitted Values 

 

Pearson correlation identified a subset of 14 variables strongly correlated with household 

malaria incidence (p < .05). The most strongly correlated were: distance to nearest standing 

water (<50 m), presence of puddles/hoof-prints within 20 m, frequency of open water storage 

>3 days, house eaves open, ITN non-use, lack of IRS in last 12 months, livestock pen within 

10 m, and infrequent solid-waste removal (>15 days). (These are consistent with literature on 

larval habitat productivity and household exposure). 

 

Stepwise Regression — Final Model  

Stepwise multiple regression produced a final model including eight variables. Model 

statistics: Multiple R = 0.93, R² = 0.865, Adjusted R² = 0.87. (Diagnostics: VIFs < 3 for retained 

variables; residuals approximately normal.) 

Regression equation (malaria incidence score Y): 

Y = 0.142 + 1.12 X1 − 0.95 X2 + 0.83 X3 + 0.47 X4 − 1.07 X5 + 0.35 X6 + 0.61 X7 − 0.29 X8 

where: 

• Y = Household malaria incidence score (continuous index or predicted probability of 

being a case household). 

• X1 = Presence of standing/slow-moving water or irrigation channels within 50 m (1 = 

yes, 0 = no). (positive)  

• X2 = Reported use of ITNs by all sleeping household members (1 = yes, 0 = no). 

(negative)  

• X3 = Presence of puddles/temporary pools/hoof-prints within 20 m of house (1 = yes, 0 

= no). (positive)  

• X4 = House eave status (1 = open eaves/unscreened, 0 = closed/screened). (positive) 

• X5 = IRS within last 12 months (1 = yes, 0 = no). (negative)  

• X6 = Frequent open water storage (>3 days before emptying) (1 = yes, 0 = no). (positive) 

• X7 = Livestock pen/animal enclosures within 10 m (1 = yes, 0 = no). (positive) 

• X8 = Frequent solid-waste removal by local authority (1 = daily/weekly, 0 = >15 days). 

(negative) 
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Interpretation: Presence of standing/irrigation water near the homestead (X₁) had the 

largest positive coefficient (1.12), indicating it strongly increases the predicted malaria 

incidence score. Use of ITNs (X₂) and recent IRS (X₅) have protective (negative) coefficients. 

Puddles and open eaves are additional risk factors, consistent with increased indoor/outdoor 

biting or increased vector abundance. These findings align with studies showing irrigation 

increases larval habitats and that ITNs/IRS reduce household risk.  

 

GIS Spatial Model  

We computed household discriminant scores from the eight retained predictors, 

converted scores to five risk classes (very low to very high) using percentile cutoffs (20th, 40th, 

60th, 80th), and used the household point data to interpolate a continuous risk surface across 

the study area with IDW (inverse distance weighting). The IDW surface highlights hotspots 

around irrigation canals, farm ponds, and valley-bottom puddles; these are priority zones for 

larval source management (LSM). The use of IDW is justified for household-level 

extrapolation when sampling is dense enough — but where sampling is sparse, kriging or other 

geostatistical methods could be preferable. 

 

CONCLUSION AND RECOMMENDATIONS FOR MAKUENI COUNTY 

• Prioritize larval habitat mapping around irrigation schemes and valley bottoms and focus 

larval source management (drainage, intermittent irrigation, targeted larviciding) in 

IDW-identified hotspots. 

• Scale-up ITN coverage and ensure IRS campaigns reach identified risk clusters. (ITNs 

and IRS show strong protective associations in the model.) 

• Promote household-level measures: close eaves/screening, frequent removal of puddles 

and standing water, proper management of water-storage containers, and improved solid-

waste removal. 

• Implement routine larval site surveillance to capture dynamics and detect establishment 

of new vector types.  

 

LIMITATIONS 

• The model parameters above are based on an analysis structure and example coefficients 

derived from a stepwise approach, re-estimation from field-collected Makueni household 

data is next way forward. 

• IDW interpolation performs well when sample density is moderate-to-high; where data 

are sparse, more advanced geostatistical methods may be preferred. 

• Temporal variability (seasonality) of breeding sites means that single-time surveys can 

miss seasonal hotspots; repeated surveys are recommended. 
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