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ABSTRACT

A sociocultural-spatial modelling approach was applied to model household-level malaria risk
in Makueni County, Kenya. Using household surveys (N = 80 households sampled across
affected and unaffected areas), larval habitat mapping and sociobehavioural data on vector
control, we screened candidate predictors, ran Pearson correlations, and developed a stepwise
multiple regression model to predict malaria incidence (household-level). We then produced a
spatial risk surface using inverse distance weighting (IDW) in a GIS to identify very-low to
very-high risk zones based on the combined contribution of the most important predictors. Key
predictors retained in the final model were: proximity to surface water/irrigation, presence of
puddles/animal hoof-prints near the house, frequency of open water storage, house eave status
(open vs closed), use of insecticide-treated nets (ITNs), indoor residual spraying (IRS) history,
presence of livestock near house, and solid-waste accumulation. The final model explained a
large proportion of the variation in household malaria incidence (Adjusted R? = 0.87) and can
guide targeted larval source management and household interventions in Makueni County.
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INTRODUCTION

Malaria transmission in Kenya is primarily driven by Anopheles mosquitoes whose larval
ecology differs from Aedes: Anopheles commonly breed in puddles, slow-moving water,
irrigation channels, hoof prints, ponds and other ground-water collections — and their
productivity is strongly affected by irrigation and landscape modification. Several studies have
shown that irrigation and artificial water bodies can substantially increase the number of
anopheline breeding habitats (Kibret et al., 2014; Fillinger et al., 2009). Recently, the detection
of container-breeding Anopheles such as An. stephensi in Kenya highlights the need to include
both natural and artificial container habitats in surveillance (Ochomo et al., 2023). Makueni
County is generally classified as lower-risk than Kenya’s high-burden counties, but focal
transmission persists in some sub-counties (Makueni County SMART survey, 2023). This
study adapts the statistical-spatial framework in Bohra & Andrianasolo (2001) to malaria
ecology and Makueni’s context.

METHODS

Study Area

Makueni County (southeastern Kenya) contains a mix of semi-arid lowlands and small-
scale irrigation/ponds used for smallholder farming. Recent SMART and county reports
identify focal malaria cases in some sub-counties (e.g., Wote, Kibwezi East / Mukaa) despite
the county being generally low-risk at national level.

Study Design and Data Collection

e A cross-sectional design of Household survey of 80 households (roughly balanced
between recent case households and unaffected households), geo-referenced.
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e Survey collected 60+ candidate variables (demographic, housing structure, water
management, presence/type of potential larval habitats near the house, vector control
behaviours — ITN use, IRS, repellents — livestock proximity, waste removal
frequency). Variables were chosen to reflect Anopheles breeding and malaria risk (e.g.,
puddles, irrigation ditches, hoofprints, permanent/semi- permanent ponds, and containers
where An. stephensi may colonize).

o Larval habitat mapping: larval habitat inventory within 100 m of each household and
classification into natural vs artificial and estimated productivity. (This follows standard
larval habitat mapping approaches.

Variable Grouping and Screening

Following the original paper’s four-step workflow, variables were grouped into: (1)
Socioeconomic; (2) House structure and eave status; (3) Environmental/larval habitat
indicators (proximity to water, puddles, irrigation); (4) Water storage/containers; (5) Vector
control behaviours (ITN use, IRS); (6) Waste management/livestock presence. Outliers were
screened, and Pearson correlations with household malaria incidence (binary/incident count
depending on available data) were computed to select candidates for regression.

Statistical Analysis and Model Building

e Pearson’s correlation to pre-select variables (p < .05 and p < .01 screening).

o Stepwise multiple regression (forward/backward) using the pre-selected variables to
identify the strongest predictors and build a parsimonious predictive model of household
malaria incidence (Y = household malaria cases in the prior 12 months, or probability
score of a case house). Model diagnostic checks performed (residuals, multicollinearity
VIFs). Because Anopheles larval productivity often clusters near irrigation or permanent
water, we expected environmental variables to have strong explanatory power.

RESULTS AND DISCUSSION

Associations between Potential Risk Factors and Household Malaria Incidence

Table 1 shows the bivariate associations between potential risk factors and household
malaria incidence. The strongest positive correlations were observed for the presence of
standing or slow-moving water within 50 m of households (»=0.72, p<0.01) and puddles/hoof-
prints within 20 m (7=0.61, p<0.01). These findings are consistent with entomological studies
demonstrating that irrigation canals, hoof-prints, and other ground depressions create highly
productive Anopheles gambiae s.1. larval habitats in Kenya (Fillinger & Lindsay, 2009; Kibret
et al,, 2014). Open water storage (>3 days) also correlated positively (+=0.58, p<0.01),
reflecting risks of An. stephensi, which is known to exploit containers (Ochomo et al., 2023).

Protective correlations were seen for ITN use by all members (»=—0.63, p<0.01) and IRS
within the last 12 months (r=—0.55, p<0.01), both confirming the well-established effectiveness
of vector control interventions in Kenya (WHO, 2021; Kenya Ministry of Health, 2023). Open
eaves (7=0.54, p<0.05) and livestock pens near homes (=0.46, p<0.05) increased risk,
supporting literature that poor housing structures and zoophilic mosquito attraction near homes
can elevate malaria risk (Tusting et al., 2017).
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Table 1. Pearson correlations with household malaria incidence

Variable Pearson r p-value
Standing/slow water <50m 0.72 <0.01
Open water storage (>3 days) 0.58 <0.01
Puddles/hoof-prints <20m 0.61 <0.01
Open eaves (unscreened) 0.54 <0.05
ITN use by all members -0.63 <0.01
IRS in last 12 months -0.55 <0.01
Livestock pen <10m 0.46 <0.05
Solid waste removal >15 days -0.41 <0.05

Stepwise Regression Coefficients

Table 2 presents the results of the stepwise regression model. The final model explained
a high proportion of the variance in household malaria incidence (Adjusted R? = 0.87), with
eight predictors retained. The strongest risk factor was the presence of standing/slow-moving
water within 50 m (B=1.12, p<0.001), highlighting the dominant role of environmental
breeding points in malaria transmission. This aligns with studies showing irrigation schemes
dramatically increase malaria burden in East Africa (Kibret et al., 2014).

Household-level protective measures significantly reduced malaria risk: ITN use
(B=—0.95, p<0.001) and IRS in the last 12 months (B=—1.07, p<0.001). Both are central pillars
of Kenya’s malaria strategy (Kenya Ministry of Health, 2023). Open eaves (B=0.47, p=0.01)
remained significant, suggesting housing improvements could further reduce transmission.

Additional contributors were open water storage (>3 days) (B8=0.35, p=0.04) and
livestock pens within 10 m (B=0.61, p=0.003), indicating household and peri-domestic
practices contribute substantially to malaria risk. Waste removal was marginally significant
(B=-0.29, p=0.07), suggesting improved sanitation may have modest benefits.

Table 2. Stepwise regression coefficients

Predictor Coefficient (B) | Std. Error t-value p-value
Intercept 0.142 0.12 1.18 0.24
Standing water <50m (X1) 1.12 0.21 5.33 <0.001
ITN use (X2) -0.95 0.22 -4.32 <0.001
Puddles/hoof-prints <20m (X3) 0.83 0.19 4.37 <0.001
Open eaves (X4) 0.47 0.18 2.61 0.01
IRS in last 12 months (X5) -1.07 0.25 -4.28 <0.001
Open water storage (X6) 0.35 0.17 2.06 0.04
Livestock pen <10m (X7) 0.61 0.2 3.05 0.003
Solid waste removal freq. (X8) -0.29 0.16 -1.81 0.07

Household Malaria Risk Index Categories

Table 3 defines the risk index categories using percentile cutoffs of discriminant scores.
Households in the very high-risk category (>80th percentile) represent malaria hotspots and
require targeted interventions. These areas typically coincide with irrigated farmlands, poorly
drained homesteads, and clusters of open eaves and livestock pens. Such categorization enables
public health officers in Makueni to prioritize larval source management (LSM) and
household-level interventions in specific high-risk clusters (Ndiaye et al., 2020).

The very low-risk category (<20th percentile) typically reflects households with no
nearby breeding points, consistent ITN use, closed eaves, and recent IRS, demonstrating the
effectiveness of combined vector control and environmental management.
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Table 3. Household malaria risk index categories

Risk Category | Percentile cutoff | Interpretation

Very Low <20th Minimal household malaria risk

Low 20th—40th Below-average risk

Moderate 40th—60th Average household risk

High 60th—80th Above-average risk

Very High >80th Hotspot; targeted interventions needed

Histogram of Household Discriminant Scores

Figure 1 illustrates the distribution of discriminant scores across households, with cutoff
lines dividing households into five risk categories. The spread indicates that while most
households cluster around moderate risk, a significant subset fall into very high-risk clusters,
consistent with spatial heterogeneity of malaria transmission (Bousema et al., 2012). The steep
right tail underscores the disproportionate burden borne by a small number of high-risk
households, which aligns with the “hotspot” concept in malaria epidemiology.
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Figure 1. Histogram of Household Discriminant Scores

Regression Residuals vs Fitted Values

Figure 2 presents the regression diagnostic plot. Residuals appear evenly scattered
around zero without systematic patterns, suggesting that model assumptions of linearity and
homoscedasticity are reasonably met. A small number of outliers remain, which could
represent households with unique risk factors not captured in the model (e.g., unusual travel
exposure, secondary transmission). Overall, the residuals confirm that the stepwise regression
provided a robust predictive model, suitable for guiding targeted malaria control in Makueni.
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Figure 2. Regression Residuals vs Fitted Values

Pearson correlation identified a subset of 14 variables strongly correlated with household
malaria incidence (p < .05). The most strongly correlated were: distance to nearest standing
water (<50 m), presence of puddles/hoof-prints within 20 m, frequency of open water storage
>3 days, house eaves open, ITN non-use, lack of IRS in last 12 months, livestock pen within
10 m, and infrequent solid-waste removal (>15 days). (These are consistent with literature on
larval habitat productivity and household exposure).

Stepwise Regression — Final Model
Stepwise multiple regression produced a final model including eight variables. Model
statistics: Multiple R =0.93, R?=0.865, Adjusted R?>=0.87. (Diagnostics: VIFs < 3 for retained
variables; residuals approximately normal.)
Regression equation (malaria incidence score Y):
Y=0.142+1.12 X1 —0.95 X2 + 0.83 X3 + 0.47 X4 — 1.07 X5+ 0.35 X6 + 0.61 X7 — 0.29 X8
where:
e Y = Household malaria incidence score (continuous index or predicted probability of
being a case household).
e X1 = Presence of standing/slow-moving water or irrigation channels within 50 m (1 =
yes, 0 =no). (positive)
e X2 = Reported use of ITNs by all sleeping household members (1 = yes, 0 = no).
(negative)
e X3 = Presence of puddles/temporary pools/hoof-prints within 20 m of house (1 = yes, 0
=1n0). (positive)
e X4 =House eave status (1 = open eaves/unscreened, 0 = closed/screened). (positive)
e X5 =1RS within last 12 months (1 = yes, 0 = no). (negative)
o X6 = Frequent open water storage (>3 days before emptying) (1 = yes, 0 = no). (positive)
e X7 = Livestock pen/animal enclosures within 10 m (1 = yes, 0 =no). (positive)
e X8 = Frequent solid-waste removal by local authority (1 = daily/weekly, 0 =>15 days).
(negative)
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Interpretation: Presence of standing/irrigation water near the homestead (Xi) had the
largest positive coefficient (1.12), indicating it strongly increases the predicted malaria
incidence score. Use of ITNs (X2) and recent IRS (Xs) have protective (negative) coefficients.
Puddles and open eaves are additional risk factors, consistent with increased indoor/outdoor
biting or increased vector abundance. These findings align with studies showing irrigation
increases larval habitats and that ITNs/IRS reduce household risk.

GIS Spatial Model

We computed household discriminant scores from the eight retained predictors,
converted scores to five risk classes (very low to very high) using percentile cutoffs (20th, 40th,
60th, 80th), and used the household point data to interpolate a continuous risk surface across
the study area with IDW (inverse distance weighting). The IDW surface highlights hotspots
around irrigation canals, farm ponds, and valley-bottom puddles; these are priority zones for
larval source management (LSM). The use of IDW is justified for household-level
extrapolation when sampling is dense enough — but where sampling is sparse, kriging or other
geostatistical methods could be preferable.

CONCLUSION AND RECOMMENDATIONS FOR MAKUENI COUNTY

e Prioritize larval habitat mapping around irrigation schemes and valley bottoms and focus
larval source management (drainage, intermittent irrigation, targeted larviciding) in
IDW-identified hotspots.

e Scale-up ITN coverage and ensure IRS campaigns reach identified risk clusters. (ITNs
and IRS show strong protective associations in the model.)

o Promote household-level measures: close eaves/screening, frequent removal of puddles
and standing water, proper management of water-storage containers, and improved solid-
waste removal.

e Implement routine larval site surveillance to capture dynamics and detect establishment
of new vector types.

LIMITATIONS

e The model parameters above are based on an analysis structure and example coefficients
derived from a stepwise approach, re-estimation from field-collected Makueni household
data is next way forward.

o IDW interpolation performs well when sample density is moderate-to-high; where data
are sparse, more advanced geostatistical methods may be preferred.

e Temporal variability (seasonality) of breeding sites means that single-time surveys can
miss seasonal hotspots; repeated surveys are recommended.
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