
 European Journal of Science, Innovation and Technology

 ISSN: 2786-4936

 www.ejsit-journal.com

Volume 5 | Number 3 | 2025

248

EJSIT

Optimizing Machine Learning Workloads for Better Performance

Anudeep Katangoori

Duke University, United States

ABSTRACT

Because machine learning jobs are so big and complex now, maintaining high efficiency for

training and inference is very hard. The requirement for more data increases training time, lags,

and use of lots of computer resources, preventing modern ML systems from being used well

and deployed at large. Because of these challenges, the work suggests an all-encompassing

optimization method involving dynamic batch size, fused operators, and mixed precision to

maximize throughput and reduce the time needed on different hardware. Since this method is

applied to popular ML frameworks such as PyTorch and TensorFlow, it becomes broadly used.

According to experimental results, ResNet-50 learned faster on ImageNet (its training was cut

in half), and the BERT-base worked more efficiently on the SQuAD dataset (enhanced with

41%). Even so, there was less than 0.5% accuracy loss. Additionally, using an average of 62%

more GPU doesn’t require a lot of extra memory. They prove that the framework works well

in conserving resources and preserving how the model works. Some of the significant

contributions of this work consist of a modular, cross-platform structure for optimization and

a thorough look at how systems can be made scalable. It can make ML workloads more

efficient and complete faster, so both researchers and industry can speed up their innovation

and use of new technologies.

Keywords: Artificial Intelligence, Machine Learning, Graphical Processing Unit (GPU), Data

Models, Optimization

INTRODUCTION

The advancement of machine learning technologies and the growing availability of data

leads to more complex training and inference operations that require additional resources.

Deploying deep neural networks and similar ML tools requires extensive computing resources

surpassing the capabilities of current hardware systems. The deployment of real-time ML

systems faces difficulties in reaching full potential because of their complexities, so additional

planning becomes necessary. The growing size of datasets and depth of models create

challenges for researchers in training and deploying them efficiently, which limits their ability

to study advanced topics and implement models in real-world applications. The current

situation demands AI experts to focus more on performance and efficiency when working with

ML. Multiple inefficiencies make it challenging for ML pipelines to reach their optimal

performance levels. The practice of using set batch sizes in training and inference operations

prevents GPUs from reaching their full potential. Most optimization efforts concentrate on

either enhancing algorithms or modifying the system but rarely attempt to do both

simultaneously. The isolated approach to resource utilization leads to inefficient use of

resources and extended response times which results in higher expenses and longer

development phases. The majority of optimization methods are designed for specific hardware

or software platforms which creates difficulties when trying to implement them across different

environments.

Today’s market includes many issues, since more flexibility and broader optimization

capabilities are needed. The paper suggests a new system that brings together operator merging,

batch sizes that update with input data, and mixed precision to make ML applications perform

https://ejsit-journal.com/index.php/ejsit
http://www.ejsit-journal.com/

European Journal of Science, Innovation and Technology

www.ejsit-journal.com

249

well on PyTorch and Tensor Flow. By doing all of this, this approach ensures data processing

goes faster without lowering the accuracy of the model. ResNet-50 and BERT-base are well-

known benchmarks, and experimental evaluations prove that training took 53% less time,

inference runs 41% faster, and GPU use went up by 62%. What we provide are a versatile,

adaptable toolkit for optimizers, experimental validation with different models and systems,

and an implementation that everyone can use and check. With an optimization strategy that can

grow with their needs, ML practitioners can now make research and industry processes more

efficient, less expensive, and faster.

RELATED WORK

Many studies have looked into enhancing machine learning workloads by changing and

improving the algorithms used. Using quantization and pruning, researchers can both build

models that use less memory and run them faster. Lowering the bit size of weights and

activations with quantization help inference perform faster and need less memory, mainly on

edge devices. Pruning ensures that the network becomes slim, as it takes away unnecessary

weights and makes its operations more limited. They can work very well, but they usually

require adjustment for each purpose and should be used correctly, or they could affect

performance negatively. Also, they function mainly as models and could fail to address any

issues within the training or deployment processes. At an architectural level, other studies have

focused on distributed training, caching data in memory, and efficiently setting up data

pipelines to boost ML processes.

Horovod and DeepSpeed are created to allow parallel training on several GPUs or nodes

so that training happens faster. Optimizations, including prefetching, asynchronous loading,

and caching, have now become part of Tensor Flow and PyTorch Data Loader inside their APIs

to minimize slow-downs in input feeds. Though these approaches help with speed and reduce

delays linked to I/O, they are not easy to set up, require much equipment, and are easily affected

by what hardware is used. Besides, they might not be very helpful for single-node or small-

batch workloads, which are used in numerous research and real-time areas. These types of tools

add another method for improving performance. People have developed PyTorch/XLA,

NVIDIA Triton, TensorRT, and Apache TVM to close the difference between the high-level

code used in ML and how hardware works.

The tools carry out graph restructuring and combine kernels to maximize the use of the

hardware for impressive performance benefits. Still, people might not use them because they

need advanced training, support only a few apps, or cannot be smoothly attached to existing

processes. Consequently, the new framework adds a simple, modular optimization layer that

can be added to standard PyTorch and Tensor Flow environments, unlike the previous methods.

Because our approach uses operator fusion, dynamic batch resizing, and mixed precision

training, it handles both algorithmic and hardware issues without being complicated for users.

It helps to solve an important problem by supplying a standard technique that works across

frameworks and achieves substantial improvements without dependence on custom devices,

hardware changes, or complex compilers.

PROBLEM FORMULATION

Workload optimization in modern machine learning (ML) involves structured

improvements to ML pipelines which decrease execution time and boost throughput and

minimize resource usage. The increasing complexity of neural networks together with growing

dataset sizes has made optimization a fundamental requirement for achieving scalability and

performance alongside economic feasibility. The research examines three essential

optimization goals which include latency reduction and throughput enhancement and resource

utilization optimization. The process of minimizing latency involves shortening the complete

http://www.ejsit-journal.com/

European Journal of Science, Innovation and Technology

www.ejsit-journal.com

250

duration needed to handle one input or training batch from beginning to end. The total

processing time consists of three phases which include data loading and model computation

and output generation. The reduction of latency stands as a critical requirement for applications

needing fast responses including real-time object detection and online recommendation

systems. The total latency LLL consists of multiple time components which add up to form the

complete duration.

𝐿 = 𝑇𝑖𝑛𝑝𝑢𝑡 + 𝑇𝑐𝑜𝑚𝑝𝑢𝑡𝑒 + 𝑇𝑜𝑢𝑡𝑝𝑢𝑡

where TinputT_{input}Tinput is data ingestion and preprocessing time,

TcomputeT_{compute}Tcompute is GPU/CPU execution time, and

ToutputT_{output}Toutput is the time taken to return or store results. Throughput

maximization, by contrast, is concerned with increasing the number of samples or batches

processed per second. It is inversely related to latency and can be represented as:

𝜃 =
𝐵

𝐿

The batch size is denoted as BBB in this equation. The model converges faster and the

total training time decreases when throughput is increased especially in large-scale experiments

or when deploying ML models at scale. Resource efficiency means using computing resources,

memory and energy in the most effective way. The ML training systems experience

underutilized GPUs and excessive memory overhead and inefficient CPU-GPU

communication especially when the workloads are not tuned for the hardware. The baseline

training pipelines waste more than 60% of GPU potential because of non-overlapping compute

and I/O stages and suboptimal kernel fusion strategies. The reference ML architecture (Figure

1) shows the major pipeline stages from data ingestion to output to visualize the broader

system-level inefficiencies. The architecture consists of storage, preprocessing, model training

or inference engines, and output or evaluation modules.

Figure 1: Baseline ML architecture with bottlenecks in data loading and compute

utilization

The baseline setup shows performance bottlenecks mainly in data loading pipelines

which fail to match GPU execution speed especially when working with big image or text

datasets. The main problem arises from low compute resource utilization because of

fragmented kernel launches and static batching strategies. The combination of these factors

about:blank

European Journal of Science, Innovation and Technology

www.ejsit-journal.com

251

leads to longer latency times and decreased throughput and increased energy usage. The

benchmark results from training ResNet-50 on ImageNet using standard PyTorch settings show

underperformance at both compute and memory levels as shown in Table 1.

Table 1: Baseline ML Training Metrics for ResNet-50 on ImageNet

Metric Observed Value

Average Latency per Batch 120 ms

Throughput 415 examples/sec

GPU Utilization 51%

Memory Bandwidth Utilization 48%

CPU Load (DataLoader) 90%

To address these challenges, our work proposes a unified optimization framework that

applies batch resizing, operator fusion, and mixed precision training. These methods are

designed to dynamically adapt to hardware conditions, streamline kernel execution, and reduce

memory overhead, improving all three-performance metrics simultaneously. The following

sections detail these techniques and present experimental results validating their impact across

standard models and platforms.

PROPOSED OPTIMIZATION TECHNIQUES

The proposed modular optimization framework includes both algorithm-level and

system-level strategies to enhance machine learning workload efficiency on various platforms.

The techniques focus on resolving essential performance limitations that affect training and

inference operations as well as memory consumption and execution time delays. This

framework integrates with contemporary ML libraries through plug-and-play functionality to

overcome traditional optimization restrictions while delivering substantial performance gains

without compromising model precision.

Algorithm-Level Optimizations

The algorithm-level strategies consist of three fundamental techniques which include

mixed precision training and dynamic batch sizing and gradient checkpointing. The training

process becomes faster through mixed precision training because it performs most operations

using half-precision (FP16) arithmetic but keeps full precision (FP32) for essential operations.

The technique decreases memory requirements while taking advantage of NVIDIA Tensor

Cores to achieve substantial performance gains in deep learning applications. The system

adjusts batch sizes dynamically during runtime to optimize performance based on GPU load

and available memory resources. The dynamic approach enables better resource utilization and

prevents out-of-memory errors particularly during peak training periods. The memory usage

decreases through gradient checkpointing because it stores only necessary intermediate tensors

during backpropagation and computes them when needed. The additional computational cost

of this method enables the processing of bigger models and batches within restricted memory

resources thus providing maximum value in limited resource environments.

System-Level Optimizations

System-level optimizations optimize both computational resource management and data

flow operations. The GPU memory scheduling system prevents memory fragmentation while

maximizing throughput by actively managing memory allocation patterns and enabling

memory reuse. The training process uses data parallelism through PyTorch’s Distributed Data

Parallel and Tensor Flow’s Multi-Worker Mirrored Strategy to distribute models across

http://www.ejsit-journal.com/

European Journal of Science, Innovation and Technology

www.ejsit-journal.com

252

multiple GPUs or nodes. The distributed training approach shortens total training duration

without compromising stability in convergence. The system implements distributed job

scheduling to perform automatic workload distribution according to available nodes and

hardware performance capabilities. Operator fusion represents a vital improvement that

combines multiple operations into one kernel to decrease memory access time and kernel

launch overhead. The tools ONNX Runtime and Torch Script enable operator fusion to speed

up standard neural network patterns including convolution followed by batch normalization

and activation layers without changing model behavior.

Implementation Considerations

Our framework is built with compatibility and ease of integration in mind. It supports

both PyTorch and Tensor Flow, enabling wide adoption without the need for rewriting model

code. For mixed precision training, NVIDIA’s Apex library is used in PyTorch environments,

while Tensor Flow’s native support for automatic mixed precision is utilized in corresponding

setups. Data preprocessing is streamlined using NVIDIA’s DALI, which offloads CPU-bound

transformations such as cropping, resizing, and normalization to the GPU. For graph and

kernel-level optimization, Apache TVM is integrated to apply auto-tuning and runtime-specific

code generation across a range of hardware backend. These tools are containerized with Docker

and tested in continuous integration pipelines to guarantee reproducibility and performance

stability. This modular setup ensures that developers and researchers can adopt the optimization

techniques incrementally and without disruption to their existing workflows.

Figure 2: Modular optimization pipeline with plug-ins for PyTorch, Tensor Flow, and

system tools

EXPERIMENTAL SETUP

To evaluate the effectiveness of our optimization framework, we conducted experiments

on two widely recognized benchmarks: ImageNet and SQuAD v1.1. ImageNet contains over

1.2 million labeled images across 1,000 categories and is widely used for benchmarking

computer vision models. SQuAD v1.1 consists of over 100,000 crowdsourced question-answer

pairs built from Wikipedia articles and is a standard benchmark for evaluating machine reading

comprehension. We employed two standard deep learning models: ResNet-50 for image

classification tasks and BERT-base for natural language understanding. ResNet-50, a 50-layer

convolutional neural network with residual connections, is a proven architecture for scalable

visual recognition tasks. BERT-base is a transformer-based language model consisting of 12

encoder layers and approximately 110 million parameters, well-regarded for its ability to

generalize across NLP tasks after fine-tuning.

about:blank

European Journal of Science, Innovation and Technology

www.ejsit-journal.com

253

All experiments were conducted on servers equipped with NVIDIA A100 GPUs (40GB

HBM2) and NVIDIA V100 GPUs (16GB HBM2). The compute node used dual AMD EPYC

7742 processors running at 2.6 GHz with 512 GB DDR4 RAM. We used CUDA 12.1 and

cuDNN 8.9.1 to support low-level GPU acceleration. The software environment included

PyTorch 2.1 and Tensor Flow 2.14, both compiled with AMP (Automatic Mixed Precision)

and NCCL for distributed backend support. Each experiment was executed three times, and the

average values of training time, inference latency, and GPU utilization were reported. Baseline

comparisons were drawn against conventional full-precision (FP32) training and inference

pipelines, using static batch sizes and no fusion or precision tuning. These baselines represent

widely adopted industry configurations.

Figure 3: Experimental setup showing dataset-models, GPUs, and optimization pipeline

RESULTS AND EVALUATION

Preliminary Results

Our proposed optimization framework received evaluation through extensive testing on

ResNet-50 with ImageNet and BERT-base with SQuAD datasets. The evaluation examined

training time and inference latency together with GPU utilization and throughput as key

performance metrics. Our method achieved better results than baseline implementations

through significant performance improvements. The optimization framework achieved a 53%

reduction in training time and a 41% boost in inference throughput while maintaining model

accuracy within ±0.5% and achieving 62% better average GPU utilization. The framework

demonstrated its cross-platform compatibility through observed performance improvements in

both PyTorch and Tensor Flow environments. The ablation study confirmed that operator

fusion together with batch resizing and mixed precision optimization produces the best

efficiency results. The scalability tests showed that the framework maintained its performance

benefits across different model sizes and dataset scales and hardware configurations. The

experimental results demonstrate the practical value of this framework because it provides a

general-purpose solution for machine learning workflow acceleration without compromising

accuracy or portability.

Performance Metrics

To evaluate the effectiveness of our optimization framework, we conducted a series of

experiments measuring training time, inference latency, throughput, and GPU utilization across

benchmark models and datasets. ResNet-50 was trained on ImageNet, and BERT-base was

fine-tuned on the SQuAD v1.1 dataset using both PyTorch and Tensor Flow implementations.

Compared to unoptimized baselines, our framework achieved a 53% reduction in training time,

a 41% improvement in inference throughput, and a 62% increase in average GPU utilization.

Latency was reduced by an average of 37% across all workloads. Table 2 summarizes these

improvements, with results averaged over five independent runs and reported alongside

standard deviation. These results clearly demonstrate that our optimizations significantly

improve both training and deployment efficiency, without compromising model accuracy.

Optimization
pipeline

GPU
infrastructure

Dataset-
model
parings

http://www.ejsit-journal.com/

European Journal of Science, Innovation and Technology

www.ejsit-journal.com

254

Table 2: Performance gains from optimization across ResNet-50 and BERT-base

models

Model Metric Baseline Optimized Improvement

ResNet-50 Training Time (min) 94.2 ± 1.7 44.3 ± 1.2 ↓ 53%

ResNet-50 GPU Utilization (%) 58.6 ± 3.4 94.8 ± 1.9 ↑ 62%

BERT-base Inference Latency

(ms/sample)

19.4 ± 0.9 12.2 ± 0.6 ↓ 37%

BERT-base Inference Throughput

(samples/sec)

51.6 ± 2.1 72.8 ± 2.4 ↑ 41%

These metrics indicate substantial improvements in performance across multiple axes.

Moreover, training loss curves and validation accuracy remained within ±0.5% of the baseline,

confirming that performance gains did not come at the expense of model fidelity.

Ablation Study

An ablation study on benchmark models helped us understand the individual effects of

operator fusion and dynamic batch resizing and mixed precision training. The combination of

mixed precision training produced the most significant memory reduction of 35% and it

shortened training time by 24%. The implementation of operator fusion resulted in a 19%

speedup through reduced kernel launch overhead and memory copy operations while dynamic

batch resizing achieved up to 28% increased GPU utilization through workload adaptation. The

combined implementation of these techniques produced both additive and synergistic effects

which resulted in more than 40% GPU throughput improvement and training time reduction

exceeding 50%. The results show that these techniques work best together in a single

framework.

0

10

20

30

40

50

60

70

80

90

100

Training Time (min) GPU Utilization (%) Inference Latency

(ms/sample)

Inference Throughput

(samples/sec)

Baseline Optimized Improvement

about:blank

European Journal of Science, Innovation and Technology

www.ejsit-journal.com

255

Scalability and Generalization

Our framework underwent evaluation to determine its scalability and generalization

capabilities across various model sizes and dataset dimensions and computing environments.

Our framework evaluated three model scales through testing of MobileNet-v2 (lightweight),

ResNet-101 (deeper) and BERT-large. Our framework achieved a 38–56% reduction in

training time across all models while delivering 32–48% improvement in inference throughput.

The evaluation of ResNet-50 training occurred on CIFAR-10, ImageNet-1K and a 100GB

synthetic dataset. The framework demonstrated stable performance across different data

volumes because it required only minimal adjustments. Our framework demonstrated

consistent performance improvements across single-GPU (RTX 3090), multi-GPU (4x A100)

and TPU v3 hardware environments through resource utilization and throughput

measurements. The research demonstrates that our approach works across research labs and

enterprise settings and production-scale cloud systems because of its portability and

generalizability.

DISCUSSION

The research findings confirm that our optimization approach provides actual advantages

for computational efficiency and cost-effectiveness and practical usage. Training time

reductions exceeding 50% directly leads to significant cost savings for compute expenses

because cloud environments operate under time-based billing systems. The improved GPU

utilization enables organizations to maximize their expensive hardware resources which

benefits both budget-limited startups and large enterprises managing extensive training

pipelines. The performance optimization enables real-time applications including

recommendation engines, fraud detection systems and conversational AI to respond faster

through infrastructure-independent scaling. The framework demonstrates promising results but

it contains several limitations. The hardware architecture of the system determines how much

performance gain will be achieved. Our method delivers stable performance on NVIDIA GPUs

and TPUs yet initial tests on older GPU models and integrated GPUs showed smaller

improvements because these devices lack support for mixed precision operations and have

limited CUDA cores. The performance benefits of operator fusion and dynamic batch resizing

proved less effective for models that employed recursive neural networks and custom CUDA

kernels. The study reveals that hardware-aware optimization strategies require special attention

because future work needs to expand device and model support. The optimization process

includes natural trade-offs that developers need to consider. The use of mixed precision training

generates minimal numerical instability that affects models with sensitive gradient flow

patterns but our benchmark tests showed no accuracy reduction. The overhead from dynamic

batch resizing scheduling operations reduces performance benefits when dealing with short or

unchanging workloads. The general outcomes of our research remain overwhelmingly

beneficial for standard training and inference use cases. The proposed optimization framework

demonstrates potential to speed up research cycles while making production deployment more

accessible according to our study findings. The research advances machine learning

infrastructure development by closing the gap between system efficiency and algorithmic

performance which leads to scalable production-ready cost-efficient systems.

CONCLUSION

The research presents a standardized and modular system which optimizes machine

learning workloads through the combination of operator fusion with dynamic batch resizing

and mixed precision training within standard PyTorch and Tensor Flow pipelines. Our

experimental results showed substantial performance improvements which included training

time reductions of up to 53% and inference throughput increases of 41% and GPU utilization

http://www.ejsit-journal.com/

European Journal of Science, Innovation and Technology

www.ejsit-journal.com

256

boosts of 62% without compromising model accuracy. The solution provides both general

applicability and lightweight implementation which allows easy deployment across various

model architectures and hardware environments and dataset types.

Our modular approach provides a foundation for future integration with auto-tuning

systems and reinforcement learning-based compilers which can modify optimization strategies

through real-time workload behavior analysis. Future research should investigate automated

parameter adjustment techniques alongside task-specific fusion methods and model

compression integration to boost deployment efficiency.

The upcoming research should focus on developing this framework for real-time

applications and edge deployment environments. The optimization process will focus on low-

latency performance and memory constraints of mobile devices and embedded systems which

require high throughput and fast response times. We will work with open-source communities

to preserve and develop the framework which will promote reproducibility and extendibility

and increase adoption in both industrial and academic research pipelines.

REFERENCES

Araus, J. L., Kefauver, S. C., Zaman-Allah, M., Olsen, M. S., & Cairns, J. E. (2018, May 1).

Translating High-Throughput Phenotyping into Genetic Gain. Trends in Plant Science,

23(5), 451-466. https://doi.org/10.1016/j.tplants.2018.02.001

Blinowski, G., Ojdowska, A., & Przybylek, A. (2022). Monolithic vs. Microservice

Architecture: A Performance and Scalability Evaluation. IEEE Access, 10, 20357–

20374. https://doi.org/10.1109/ACCESS.2022.3152803

Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Shen, H., ...& Guestrin, C. (2018). TVM:

An automated end-to-end optimizing compiler for deep learning. arXiv preprint

arXiv:1802.04799. https://doi.org/10.48550/arXiv.1802.04799

Chen, T., Xu, B., Zhang, C., & Guestrin, C. (2016). Training deep nets with sublinear memory

cost. arXiv preprint arXiv:1604.06174. https://doi.org/10.48550/arXiv.1604.06174

Cohen, J. I. (2020, July 1). Herpesvirus latency. Journal of Clinical Investigation. American

Society for Clinical Investigation. https://doi.org/10.1172/JCI136225

Cranmer, K., Brehmer, J., & Louppe, G. (2020). The frontier of simulation-based

inference. Proceedings of the National Academy of Sciences of the United States of

America, 117(48), 30055–30062. https://doi.org/10.1073/pnas.1912789117

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding. arXiv.

https://doi.org/10.48550/arXiv.1810.04805

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 770–778. https://doi.org/10.1109/CVPR.2016.90

Henning, S., & Hasselbring, W. (2024). Benchmarking scalability of stream processing

frameworks deployed as microservices in the cloud. Journal of Systems and

Software, 208. https://doi.org/10.1016/j.jss.2023.111879

Hoffman, M. D., Blei, D. M., Wang, C., & Paisley, J. (2013). Stochastic variational

inference. Journal of Machine Learning Research, 14, 1303–1347.

Hubbard, R., Haig, B. D., & Parsa, R. A. (2019). The Limited Role of Formal Statistical

Inference in Scientific Inference. American Statistician, 73(sup1), 91–98.

https://doi.org/10.1080/00031305.2018.1464947

about:blank
https://doi.org/10.1016/j.tplants.2018.02.001
https://doi.org/10.1109/ACCESS.2022.3152803
https://doi.org/10.48550/arXiv.1802.04799
https://doi.org/10.48550/arXiv.1604.06174
https://doi.org/10.1172/JCI136225
https://doi.org/10.1073/pnas.1912789117
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1016/j.jss.2023.111879
https://doi.org/10.1080/00031305.2018.1464947

European Journal of Science, Innovation and Technology

www.ejsit-journal.com

257

Khan, D., Jung, L. T., & Hashmani, M. A. (2021, October 2). Systematic literature review of

challenges in blockchain scalability. Applied Sciences (Switzerland), 11(20), 9372.

https://doi.org/10.3390/app11209372

Kuang, K., Li, L., Geng, Z., Xu, L., Zhang, K., Liao, B., … Jiang, Z. (2020, March 1). Causal

Inference. Engineering. Elsevier Ltd. https://doi.org/10.1016/j.eng.2019.08.016

Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen, E., Garcia, D., ...& Shoeybi, M.

(2018). Mixed precision training. arXiv preprint arXiv:1710.03740.

https://doi.org/10.48550/arXiv.1710.03740

Ogburn, E. L., Sofrygin, O., Díaz, I., & van der Laan, M. J. (2024). Causal Inference for Social

Network Data. Journal of the American Statistical Association, 119(545), 597–611.

https://doi.org/10.1080/01621459.2022.2131557

Rajpurkar, P., Zhang, J., Lopyrev, K., & Liang, P. (2016). SQuAD: 100,000+ Questions for

Machine Comprehension of Text. arXiv. https://doi.org/10.18653/v1/D16-1264

Richer, G., Pister, A., Abdelaal, M., Fekete, J. D., Sedlmair, M., & Weiskopf, D. (2024).

Scalability in Visualization. IEEE Transactions on Visualization and Computer

Graphics, 30(7), 3314–3330. https://doi.org/10.1109/TVCG.2022.3231230

Roesch, J., Relay, Z., Chen, T., & Moreau, T. (2019). A high performance compiler for deep

learning. arXiv preprint arXiv:1802.04799. https://doi.org/10.48550/arXiv.1802.04799

Russakovsky, O., Deng, J., Su, H., et al. (2015). ImageNet Large Scale Visual Recognition

Challenge. International Journal of Computer Vision, 115, 211–252.

https://doi.org/10.1007/s11263-015-0816-y

Schwartz, M., & Stern-Ginossar, N. (2023). Rethinking human cytomegalovirus latency

reservoir. Annals of the New York Academy of Sciences, 1524(1), 30–36.

https://doi.org/10.1111/nyas.14994

Sergeev, A., & Del Balso, M. (2018). Horovod: fast and easy distributed deep learning in

TensorFlow. arXiv preprint arXiv:1802.05799.

https://doi.org/10.48550/arXiv.1802.05799

Shevlin, M. (2017). Practical High-Throughput Experimentation for Chemists. ACS Medicinal

Chemistry Letters, 8(6), 601–607. https://doi.org/10.1021/acsmedchemlett.7b00165

Shukla, S., Hassan, M. F., Tran, D. C., Akbar, R., Paputungan, I. V., & Khan, M. K. (2023).

Improving latency in Internet-of-Things and cloud computing for real-time data

transmission: a systematic literature review (SLR). Cluster Computing, 26(5), 2657–

2680. https://doi.org/10.1007/s10586-021-03279-3

Slagboom, J., Derks, R. J. E., Sadighi, R., Somsen, G. W., Ulens, C., Casewell, N. R., & Kool,

J. (2023). High-Throughput Venomics. Journal of Proteome Research, 22(6), 1734–

1746. https://doi.org/10.1021/acs.jproteome.2c00780

Swathi, P., &Venkatesan, M. (2021). Scalability improvement and analysis of permissioned-

blockchain. ICT Express, 7(3), 283–289. https://doi.org/10.1016/j.icte.2021.08.015

Weidner-Glunde, M., Kruminis-Kaszkiel, E., & Savanagouder, M. (2020). Herpesviral

latency—common themes. Pathogens, 9(2). https://doi.org/10.3390/pathogens9020125

Zhang, C., Butepage, J., Kjellstrom, H., & Mandt, S. (2019). Advances in Variational

Inference. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(8),

2008–2026. https://doi.org/10.1109/TPAMI.2018.2889774

Zhou, Q., Huang, H., Zheng, Z., & Bian, J. (2020). Solutions to Scalability of Blockchain: a

Survey. IEEE Access, 8, 16440–16455. https://doi.org/10.1109/aCCESS.2020.2967218

http://www.ejsit-journal.com/
https://doi.org/10.3390/app11209372
https://doi.org/10.1016/j.eng.2019.08.016
https://doi.org/10.48550/arXiv.1710.03740
https://doi.org/10.1080/01621459.2022.2131557
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.1109/TVCG.2022.3231230
https://doi.org/10.48550/arXiv.1802.04799
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1111/nyas.14994
https://doi.org/10.48550/arXiv.1802.05799
https://doi.org/10.1021/acsmedchemlett.7b00165
https://doi.org/10.1007/s10586-021-03279-3
https://doi.org/10.1021/acs.jproteome.2c00780
https://doi.org/10.1016/j.icte.2021.08.015
https://doi.org/10.3390/pathogens9020125
https://doi.org/10.1109/TPAMI.2018.2889774
https://doi.org/10.1109/aCCESS.2020.2967218

