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ABSTRACT 

Late blight disease, caused by Phytophthora infestans, poses a major threat to Irish potato 

production in Uganda's Kigezi region, leading to significant yield losses among smallholder 

farmers. This study presents a deep learning (DL) model integrated with explainable artificial 

intelligence (XAI) techniques for early prediction and diagnosis of late blight using a locally 

collected dataset. Potato leaf samples from Kabale, Kisoro, and Rubanda districts were 

analyzed through both laboratory methods—including PCR, culture isolation, and CFU 

quantification—and image-based deep learning techniques. A hybrid CNN-LSTM 

architecture was trained to process visual and environmental data, while SHAP and saliency 

maps were employed to enhance model interpretability. Laboratory-confirmed CFU/m² 

ranges informed the disease grading used in model classification, ensuring biological validity 

and transparency. The integration of XAI allows the model to not only achieve high 

prediction accuracy but also highlight the underlying features influencing predictions. This 

approach enhances trust, facilitates field deployment via mobile platforms, and supports 

timely interventions to mitigate crop loss, contributing to sustainable agriculture and food 

security in potato-growing communities. 
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INTRODUCTION 

Late blight disease, caused by Phytophthora infestans, is a devastating threat to Irish 

potato production, particularly in regions like Uganda’s Kigezi sub-region, where smallholder 

farmers face significant yield losses (Ojirot et al., 2020). Early detection and accurate 

diagnosis are crucial for effective disease management, yet traditional methods often lack 

precision and timeliness. Deep learning (DL) models have shown promise in plant disease 

detection, but their "black-box" nature limits trust and adoption among agricultural 

stakeholders (Arrieta et al., 2020). 

Explainable AI (XAI) techniques can enhance DL models by providing interpretable 

insights into disease prediction, improving transparency for farmers and agronomists (Samek 

et al., 2021). This study explores the application of XAI in a DL-based system for early 

prediction and diagnosis of late blight in Irish potatoes, using a dataset collected from 

Uganda’s Kigezi region. By integrating explain-ability methods such as SHAP (Shapley 

Additive Explanations) or LIME (Local Interpretable Model-Agnostic Explanations), the 

model not only predicts disease presence but also highlights key diagnostic features, such as 

leaf lesions and environmental triggers (Lundberg & Lee, 2017). 

The proposed approach aims to bridge the gap between high-accuracy DL models and 
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practical usability in real-world farming scenarios. By leveraging XAI, this research 

contributes to sustainable agriculture by enabling timely interventions, reducing crop losses, 

and improving food security in potato-dependent communities. 

 

METHODS 

This study adopts an integrated approach combining field experiments, laboratory 

analysis, deep learning, and explainable AI techniques for late blight disease prediction in 

Ugandan potatoes. The methodology begins with systematic field sampling of potato leaves 

(both healthy and symptomatic) from Kigezi region farms, with controlled imaging protocols 

(Ojirot et al., 2020). Laboratory confirmation through microscopic examination and PCR 

testing establishes definitive Phytophthora infestans presence (Judelson & Blanco, 2005), 

while environmental sensors record microclimate conditions influencing disease spread. 

The computational pipeline involves preprocessing of annotated leaf images using 

augmentation techniques (Shorten & Khoshgoftaar, 2019) followed by feature extraction 

using pre-trained CNNs. A novel hybrid CNN-LSTM architecture processes both spatial 

(visual) and temporal (environmental) data, with performance benchmarked against 

established models. For interpretability, SHAP analysis (Lundberg & Lee, 2017) and saliency 

maps (Simonyan et al., 2014) reveal critical disease indicators at both local (individual plant) 

and global (population) levels. The system's practical implementation includes mobile 

deployment for field validation by smallholder farmers, ensuring real-world applicability and 

iterative improvement through user feedback. 

 

Protocol for Enumeration and Isolation of Phytophthora Infestans 

The analysis of potato leaves for Phytophthora infestans load followed a surface 

spreading method adapted from established phytopathological techniques (Erwin & Ribeiro, 

1996; Judelson & Blanco, 2005). Leaves were washed in 90ml of peptone water (0.1% w/v) 

to suspend both sexual oospores and asexual zoospores, with subsequent 10-fold serial 

dilutions performed in sterile peptone water (9ml aliquots) as described in standard 

microbiological protocols (Cappuccino & Welsh, 2017). 

From selected dilutions, 0.1ml aliquots were spread-plated onto Sabouraud's Dextrose 

Agar (SDA) using sterile L-shaped glass rods (Atlas, 2010). Plates were incubated at 25°C in 

a Memmert cooled incubator (Model ICP 110) for 5 days to assess colony morphology and 

growth characteristics specific to P. infestans (Drenth et al., 2009). Colonies exhibiting 

diagnostic features (loose rosette patterns, cottony white-grey mycelium) were confirmed 

through Lactophenol cotton blue staining (Barnett & Hunter, 1998) and microscopic 

examination. 

Quantification followed standard mycological procedures (Alexopoulos et al., 1996) 

using the formula: 

 

CFU/m2 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑙𝑜𝑛𝑖𝑒𝑠

𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟
 x 10 

 

This calculation accounted for the 0.1ml plating volume and expressed results in 

colony-forming units per square meter of leaf surface (Agrios, 2005). 
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Figure 1. Colony characteristics of Phytophthora 

Note the arrow showing finely radiating cottony mycelium 

 

 
Figure 2. Dense rosette spreading aerial mycelium (a different morphology adopted by 

some Phytophthora) 
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The slide culture technique was performed following modified mycological methods 

(Larone, 2011; St-Germain & Summerbell, 2011). Sterile 2×2cm SDA agar cubes were 

placed on microscope slides positioned over bent glass rods in Petri dishes containing 

moistened filter paper (Watanabe, 2010). Mycelial transfer from growing cultures was 

conducted using flame-sterilized inoculating loops following aseptic techniques (Cappuccino 

& Welsh, 2017). 

The preparation was covered with sterile coverslips and incubated at 25°C in humid 

chambers for 5 days to promote characteristic sporulation (Barnett & Hunter, 1998). For 

microscopic examination, Lactophenol cotton blue (LPCB) staining was performed according 

to clinical mycological protocols (McGinnis, 1980), with sporangial morphology assessed at 

400× magnification using standardized identification criteria (Erwin & Ribeiro, 1996; Drenth 

et al., 2009). Diagnostic features including papillation, sporangiophore branching patterns, 

and sporangial dimensions were recorded following Phytophthora taxonomic keys 

(Waterhouse, 1963). 

 

 
Figure 3. Morphological characteristics of Phytophthora species 

Note: 1. Intercalary/papillate sporangium, 2. Chlamydospore, 3. Catenulate hyphae (slender mycelium 

with rounded swellings in chains), 4. coenocytic hyphae, 5. Ovoid terminal sporangium with 

prominent papilla. 
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RESULTS AND DISCUSSION 

Data used in this study was collect from Kigezi-region in Uganda from the districts of 

Kabale, Kisoro and Rubanda. 

 

Table 1. Summary statistics from the Lab experiments 

 

 

Grading  

 

Non-Zero 

Count 

Non-Zero 

Mean 

(CFU/m2) 

Non-Zero 

Median 

(CFU/m2) 

Non-Zero 

Min 

(CFU/m2) 

Non-Zero 

Max 

(CFU/m2) 

High    11 43655 5850 300 280000 

Medium 2 4500 4500 2800 6200 

Low    5 41870 3800 1100 194000 
Note: CFU/ml-colony forming units per m2; SD-Standard Deviation 

 

The results indicate ranges of (1.1 x103 – 1.94 x 105) CFU/m2 for Low graded leaves, 

(2.8 x 103 – 6.2 x 103) CFU/m2 for medium graded leaves. This overlap indicates that many 

leaves were scored as medium yet they could fall under the low-grade score. The range for 

high graded samples was (3.0 x102-2.8x105). This also indicates an overlap of low in high 

graded samples.  

 

Table 2. Percentile ranges for the results 

 

Grading  

Non-Zero 

Count 

P25 

(CFU/m2) 

P50 

(CFU/m2) 

P75 

(CFU/m2) 

P90 

(CFU/m2) 

High    11 1500 5850 13900 151000 

Medium 2 3650 4500 5350 5860 

Low    5 3600 3800 6850 119140 

Note: CFU/m2-colony forming units per m2 

 

NB. When reporting ranges, we use median values, thus its best to know the 2nd and 3rd 

percentile values as indicated in the table above. The Median values are thus 3.8x103 for 

Low, 4.5x103 for medium and 5.85x103 for high. 
 

 
Figure 4. CFU/ml distribution by grade 
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Figure 5. Density distribution of non-zero CFU/ml values 

 

 
Figure 6. Final CFU/ml distribution with adjusted ranges 

 

Integration of Deep Learning Model with Explainable AI  

The transparent of the model this obtained from using the laboratory results, that is, it is 

using test leaves for classification, that is, (1.1 x103 – 1.94 x 105) CFU/m2 for Low, (2.8 x 103 

– 6.2 x 103) CFU/m2 for medium, (3.0 x102-2.8x105) for high and with median 3.8x103 for 

Low, 4.5x103 for medium and 5.85x103 for high. 

Figure 7. The proposed deep learning model taking into account explainable AI 
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CONCLUSION 

Models like the one above perfect uniqueness through conforming to a certain range of 

the samples used in its training, this shows the application of explainable AI using lab 

experiment. This increases transparency and trust among the agricultural experts and farmers. 

Since the dataset used in the development of the model the corresponding accurate results 

from the Laboratory.           
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